Advertisements

Blog Archives

Answers to 8 Questions About the August 2017 Solar Eclipse

It’s August and one of the most highly-anticipated astronomical events of the 21st century is nearly upon us: the August 21 solar eclipse, which will be visible as a total eclipse literally across the entire United States…but that doesn’t mean everywhere in the United States. Totality will pass across the U.S. in a narrow band about 60 miles wide starting along the northern coast of Oregon at 10:18 a.m. local time (PDT) and ending along the coast of South Carolina at 2:48 p.m. EDT. But that’s just totality—the full eclipse event will actually begin much earlier than that and end later, and its visibility won’t be limited to only that path. And while it’ll be happening overhead in the daytime sky you’ll need the right equipment to view it safely, whether you’re in totality or not.

Wait, you say, what’s the difference between totality and…not totality? And how is it caused? And why is this a big deal at all? If you’re wondering those things (and perhaps others) then this post is just for you. Below are answers to some common—and certainly not dumb—questions about the solar eclipse, brought to you by yours truly (with a little help from NASA and other eclipse specialists.)

Read the rest of this entry

Advertisements

This Toxic Compound on Titan Could Support Life “Not as We Know It”

Illustration of a sunrise over a liquid methane lake on Titan. © Ron Miller. All rights reserved.

Saturn’s largest moon Titan is often called an analogy to early Earth, with its thick, chemical-rich atmosphere and widespread system of flowing rivers and north polar lakes. But located almost a billion miles away from the Sun, everything on Titan is shifted into a completely different—and frigid—level of existence from that found on Earth. With surface temperatures of 300 degrees below zero F, the lakes are filled with liquid methane and what’s life-giving water here is literally solid rock there. Even the rain on Titan falls as oversized drops of ethane.

But even in this extreme cryo-environment it’s possible that life may right now exist…life relying on an entirely different chemistry than what’s possible on our planet.

Recently scientists have identified a molecule on Titan called vinyl cyanide, or acrylonitrile. To Earthly life acrylonitrile is toxic and carcinogenic; luckily for us it isn’t naturally-occurring here. But on Titan it is and apparently in quantity; it’s possible that vinyl cyanide, raining down from Titan’s atmosphere into its vast hydrocarbon lakes, could even help form methane-based cell structures in much the same way phospholipids do here.

The molecule (C2H3CN) has the ability to form membranes and, if found in liquid pools of hydrocarbons on Titan’s surface, it could form a kind of lipid-based cell membrane analog of living organisms on Earth. In other words, this molecule could stew in primordial pools of hydrocarbons and arrange itself in such a way to create a “protocell” that is “stable and flexible in liquid methane,” said Jonathan Lunine (Cornell University) who, in 2015, was a member of the team who modeled vinyl cyanide and found that it might form cell membranes.

Further evidence of life “not as we know it?” Read more on Ian O’Neill’s Astroengine blog here: Vinyl Cyanide Confirmed: Weird Form of Alien Life May Be Possible on Saturn’s Moon Titan and in a Gizmodo article by Maddie Stone here: Potential Building Block of Alien Life Spotted in Titan’s Atmosphere

Our Moon Could Be Conveniently Full of Water

“Hot spots” on this map of the Moon indicate volcanic flows with increased water content, presumably originating from the interior. (Credit: Milliken Lab/Brown University)

It’s been known for a while (especially since the 2009 LCROSS impact experiment) that there is water on the Moon. But so far the largest volume has been found as ice inside the shadowed walls of craters on the Moon’s south pole, likely originating from ancient comet impacts. Now, using data collected by India’s Chandrayaan-1 lunar satellite, researchers from Brown University in Providence, Rhode Island have identified water inside ancient pyroclastic flows located across the Moon’s surface—water that must have come from inside the Moon itself.

“We observe the water in deposits that are at the surface today, but these deposits are the result of magma that originally comes from deep within the lunar interior,” said Ralph Milliken, a geologist at Brown and lead author of the study. “Therefore, because the products of the magma have water, the deep interior of the Moon must also contain water.”

While the age and origin of this indigenous interior water aren’t yet known, its availability near the surface would be a valuable asset for any future human settlements on the Moon.

Read the rest of this article by Samantha Mathewson on Space.com here: The Moon’s Interior Could Contain Lots of Water, Study Shows

Jupiter’s Surprises Are Revealed In First Juno Science Results

JunoCam image of Jupiter’s south pole, captured during its P6 pass on May 19, 2017. (Credit: NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran)

Today after almost 11 months in orbit the Juno team revealed the first scientific findings of the mission to the public via a NASA teleconference, giving us our first peek at the inner workings of Jupiter and how much of a surprise our Solar System’s largest planet is proving to be…which of course is quite fitting, as the spacecraft is named after the wife of Jupiter who could see through her mischievous husband’s veiling clouds.

“The new science results from Juno really are our first look close-up at how Jupiter works,” said Scott Bolton, principal investigator for the Juno mission. “For the first time we’re looking inside of Jupiter at the interior, and what we’re seeing is it doesn’t look at all like what we predicted.”

Read the rest of this entry

Worried About Asteroid 2014 JO25? Don’t Be.

Concept image of a large asteroid passing by Earth and the Moon (NASA/Jason Major)

SPACE NEWS FLASH: On Wednesday, April 19, the asteroid 2014 JO25 will pass by Earth, coming as close as about 1.1 million miles at 12:24 UTC (8:24 a.m. EDT / 5:24 a.m. PDT). Yes, this asteroid is fairly large—just under half a mile across—and is traveling very fast—about 21 miles a second— BUT even so it poses no danger to Earth as 1.1 million miles is still over four and a half times the distance to the Moon…and it’s simply not going to get any closer than that.

It’s. Just. Not.

Read the rest of this entry

%d bloggers like this: